A Faster Patch Ordering Method for Image Denoising
نویسنده
چکیده
Among the patch-based image denoising processing methods, smooth ordering of local patches (patch ordering) has been shown to give state-of-art results. For image denoising the patch ordering method forms two large TSPs (Traveling Salesman Problem) comprised of nodes in N-dimensional space. Ten approximate solutions of the two large TSPs are then used in a filtering process to form the reconstructed image. Use of large TSPs makes patch ordering a computationally intensive method. A modified patch ordering method for image denoising is proposed. In the proposed method, several smaller-sized TSPs are formed and the filtering process varied to work with solutions of these smaller TSPs. In terms of PSNR, denoising results of the proposed method differed by 0.032 dB to 0.016 dB on average. In original method, solving TSPs was observed to consume 85% of execution time. In proposed method, the time for solving TSPs can be reduced to half of the time required in original method. The proposed method can denoise images in 40% less time.
منابع مشابه
Patch Ordering as a Regularization for Inverse Problems in Image Processing
Recent work in image processing suggests that operating on (overlapping) patches in an image may lead to state-of-the-art results. This has been demonstrated for a variety of problems including denoising, inpainting, deblurring, and super-resolution. The work reported in [1, 2] takes an extra step forward by showing that ordering these patches to form an approximate shortest path can be leverag...
متن کاملImage Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...
متن کاملA Block-Grouping Method for Image Denoising by Block Matching and 3-D Transform Filtering
Image denoising by block matching and threedimensionaltransform filtering (BM3D) is a two steps state-ofthe-art algorithm that uses the redundancy of similar blocks innoisy image for removing noise. Similar blocks which can havesome overlap are found by a block matching method and groupedto make 3-D blocks for 3-D transform filtering. In this paper wepropose a new block grouping algorithm in th...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1704.08090 شماره
صفحات -
تاریخ انتشار 2017